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Abstract

This paper describes the implementation and evaluation of a pre-operational three
dimensional variational (3DVAR) data assimilation system for the North/Baltic Sea.
The univariate analysis for temperature and salinity is applied in a 3DVAR scheme
in which the horizontal component of the background error covariance is modeled by5

an isotropic recursive filter (IRF) and the vertical component is represented by dom-
inant Empirical Orthogonal Functions (EOFs) of the background error. Observations
of temperature and salinity (T/S) profiles in the North/Baltic Sea are assimilated in the
year of 2005. Effectiveness of the data assimilation scheme is assessed by comparison
with the control run that no assimilation is done. The statistical analysis indicates that10

the model simulation is significantly improved with the 3DVAR scheme. On average,
the root mean square error (RMSE) of temperature and salinity is reduced by 0.2 ◦C
and 0.25 psu in the North/Baltic Sea. In addition, the bias of temperature and salinity
is also decreased by 0.1 ◦C and 0.2 psu, respectively. Starting from an analyzed initial
state, one month simulation without assimilation is carried out with the aim of examin-15

ing the persistence of the initial impact. It is shown that the assimilated initial state can
impact the model simulation for nearly two weeks. The influence on salinity is more
pronounced than temperature.

1 Introduction

In coastal and shelf seas, operational forecasting systems become feasible in recent20

years due to a few factors: increasing maturity of numerical models, advances in sys-
tematic and real-time monitoring, and progresses in data assimilation techniques and
applications. At present, there are increasing requirements for operational forecasting
systems in coastal and shelf seas to provide information in wide utility and availability
to deal with marine environment problems and satisfy needs at different levels from the25
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community (offshore oil industry operations, fish stock management, chemical contam-
ination, and water quality associated with public heath, etc.) (e.g. Holt, 2002).

In the North Sea and Baltic Sea Danish Meteorological Institute (DMI) has been run-
ning a regional oceanographic physical model DMI-BSHcmod (Dick et al., 2001) and
provide operational forecasts since 2001. After several years’ operational practice and5

research activity, this coast/shelf forecasting system is required to be improved in sev-
eral branches. Among them, one of the most pressing motivations is to develop a suit-
able data assimilation technique so that the real ocean observations can be utilized for
improving the forecasting skill of the system. A simplified Kalman filter was attempted
for only SST assimilation in the operational DMI-BSHcmod since 2006 (Larsen, 2006).10

However, the limitation of being unable to assimilate three dimensional (3-D) observa-
tions give rise to the necessity of developing a more powerful data assimilation scheme
with which the increasingly expanded ocean measurements from various platforms are
able to be utilized.

In coastal and shelf seas, numerical forecasting is in itself a major challenge for the15

scientific community because of the specific and rich dynamics in the coastal regions.
The coastal-shelf scale data assimilation is rather immature as compared to the global
scale data assimilation and less applied in operational forecasting systems for a long
time. This problem can be accounted for by several factors. Firstly, one major problem
is the lack of real time in-situ observations in an operational sense. In addition, quality20

of satellite observations is relatively poor in coastal waters. This renders the assimila-
tion more dependent on in-situ observations. Complex topography and coastlines also
impose some technical constraints on coastal-shelf data assimilation schemes. How-
ever, this situation has changed a lot in recent years. First of all, the coastal-shelf sea
operational observation systems have been largely improved in the European area.25

For example, the Baltic Operational Oceanographic System (BOOS) is now providing
real-time ocean observations and forecasts for the marine industry, public and other
end-users. Its follow-up system InfoBoos provides online data delivery of both satellite
and in-situ measurements over the Baltic sea since 1999. Similar observing systems
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have been developed in other European coastal seas. To some extent, the rapid devel-
opment of these operational observation systems makes it possible to assimilate real-
time ocean observations into a coastal-shelf forecasting system. In the second place,
recent development of data assimilation techniques offers more choices to develop
a coastal/shelf scale ocean data assimilation system. For data assimilation applica-5

tions in coastal-shelf forecasting systems, the highly inhomogeneous, non-stationary
and anisotropic forecasting error covariance is a key issue to be taken into account.
The best way to resolve it is probably to exploit a complex data assimilation scheme,
such as 4DVAR or Ensemble Kalman Filter (EnKF). However, such schemes require
prohibitive computational resources, and also demand huge manpower to maintain10

the system due to its difficulty and complexity in technical implementation. Therefore,
more efficient approaches like 3DVAR, or Optimal Interpolation (OI) are preferable in
operational forecasting systems. Regarding these schemes, how to deal with the high
inhomogeneity in the coastal-offshore regions remains a serious issue. Our recent ex-
periments (Liu et al., 2009) show that a modified 3DVAR methods makes it possible15

to overcome this problem to a certain extent. The anisotropic recursive filter (ARF)
developed by Hayden and Purser (1995) and Purse et al. (2003a) provides a reason-
able way to represent the anisotropic background error covariance in 3DVAR. Due to
its low cost of implementation and computation, as well as being able to use various
types of observations globally, 3DVAR still appears to be an appealing scheme for the20

coastal operational forecasting systems. In addition, when developing variational data
assimilation systems at operational centers, 3DVAR has been a necessary prerequi-
site to the ultimate goal of 4DVAR assimilation algorithms. As for the North/Baltic Sea,
the spatial and temporal resolution required to make realistic predictions are gener-
ally much higher than the resolution required for the adjacent deep ocean. Processes25

such as tides, internal waves breaking and the barotropic response to high-frequency
atmospheric forcing have time scales of hours and horizontal scales that can be of or-
der 100 m or less. Moreover, the complex bathymetry and topography requires some
special treatments in the 3DVAR scheme in order to reproduce the background error
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covariance realistically. In DMI, both IRF and ARF are applied in the 3DVAR data
assimilation system. But as a preliminary step, only IRF is employed to carry out the
experiments for the system verification and validation in this study. ARF will be adopted
and tested in the next step for future practical applications.

This paper describes the implementation of a pre-operational 3DVAR assimilation5

system in DMI. Section 2 describes the basic 3DVAR scheme; Sect. 3 presents the
preconditioning and transform of variables in 3DVAR. Section 4 describes the opera-
tional forecasting model and observations used for assimilation experiments. Section 5
presents the experiment with a single observation. Results from 1 year assimilation ex-
periment with T/S profiles are given in Sect. 6. Section 7 gives a conclusion and an10

outlook on the future work.

2 The 3DVAR scheme

2.1 General formulation

In general, the basic scheme of 3DVAR is to find the optimal solution of the model state
x which minimizes the following cost function:15

J(x) =
1
2

(x − xb)T B−1 (x − xb) +
1
2

(H(x) − yo)T R−1 (H(x) − yo) (1)

x is the model state to be estimated. It usually refers to analysis state vector. xb is
the background state vector, yo is the observation state vector. H is the non-linear ob-
servational operator with which the analysis equivalent of observation y =H(x) can be
obtained to compare with the observation measurements. The superscript T denotes20

matrix transpose. In the cost function, the misfit between analysis and background is
weighted by the background error covariance B, and the misfit between analysis and
observation is weighted by the observational error covariance R. Usually the optimal
solution is found by minimizing the cost function J(x) with respect to x, in which its
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gradient is also needed for determining the search direction and iteration steps in the
minimizing algorithm:

∇J(x) = B−1 (x − xb) + ∇x H(x)T R−1 (H(x) − yo) (2)

Following an incremental method (Courtie, 1994), Eq. (1) is linearized around the back-
ground state into the following form:5

J(δx) =
1
2
δxT B−1 δx +

1
2

(H δx − d )T R−1 (H δx − d ) (3)

where d =yo−H(xb)is the innovation vector, H is the linearized observation operator
evaluated at x=xb and δx=x−xb is the analysis incremental vector. In this way,
the original problem translates into finding an incremental analysis δx. Equation (2)
becomes:10

∇J (δx) = B−1 δx + HT R−1 (H δx − d ) (4)

In our current scheme, the state vector contains only temperature and salinity model
state variables:

x = [T S]T (5)

2.2 Numerical algorithm of minimization15

For a typical coastal ocean data assimilation system, the order of the original size of
background error covariance matrix B is about 106 ∼107. After some applications of
simplifying procedures like preconditioning variable transform and applying EOFs, the
size of B is still very large, so minimization algorithm with high efficiency is crucial to
solve the 3DVAR problem.20

The quasi-Newton L-BFGS algorithm (Byrd et al., 1995) is adopted to minimize the
cost function (Eq. 6). Indeed, L-BFGS uses a limited memory variation of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update to approximate the inverse Hessian matrix
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(denoted by HK). Unlike the original BFGS method which stores a dense n×n ap-
proximation (if the lenghth of state vector is n), L-BFGS stores only a few vectors that
represent the approximation implicitly. Due to its moderate memory requirement, L-
BFGS method is particularly well suited for optimization problems with a large number
of variables5

3 Preconditioning and transform of control variables

In practice, the most difficult issue in minimizing the cost function of 3DVAR is how to
deal with the inverse of the background error covariance matrix B due to its tremendous
size. One practical solution to this problem is to perform a preconditioned control vari-
able transform (defined by δx=Uv ) in the process of minimization (e.g. Lorenc, 1997).10

Normally, the transform U is chosen to approximately satisfy the relationship B=UUT

and the control variable vector v is chosen as their errors are relatively uncorrelated.
With this assumption, the cost function is rewritten as follows:

J(v ) =
1
2
v T v +

1
2

(HUv − d )T R−1 (HUv − d ) (6)

Equation (4) then becomes:15

∇v J = v + UT HT R−1 (HUv − d ) (7)

In this way, the minimization can be carried out without handling the inverse of B.
Although the optimal solution can be found with Eqs. (6) and (7) theoretically, further
simplification is necessary since U still has a large size. Suppose the background
error covariance between any two points can be separated into a product of vertical20

component by horizontal component, it is easy to demonstrate (Lorenc, 2000) that the
computation of B implicitly involves the transform of U which includes a sequence of
linear operators:

U = UP UV UH (8)
1137
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where UH is the horizontal part of the control variable transform related to the horizon-
tal mode of B, UV is the vertical part of the control variable transform related to the
vertical mode of B, and UP is the physical transform related to the multivariate dynamic
or physical constraints (e.g. the relationship between sea surface height, SSH, error
and temperature/salinity error; the relationship between current and SSH etc.). The5

formulation and meaning of each linear operator is described in the following subsec-
tions.

3.1 Horizontal part of control variables transform

The background error covariance in our scheme is assumed initially to be isotropic and
homogeneous Gaussian type. Usually the Gaussian type spatial correlation can be10

efficiently modeled in two ways. One way is to repeatedly apply a Laplacian operator
which is also the solution of the horizontal diffusion equation. This method is mostly
used in those 3DVAR data assimilation schemes applied in global NWP spectral mod-
els. The other way is to apply a recursive filter to approximate the Gaussian correlation
function (Lorenc, 1992; Hayden and Purser, 1995). While the recursive filter is widely15

applied in the meteorological data assimilation, applications are less documented in
the oceanic literature.

The recursive filter operator is defined as follows:

Rf :
{
Bi = αBi−1 + (1 − α) Ai i = 1, 2, ..., I
Ci = αCi+1 + (1 − α) Bi i = I, ..., 2, 1

(9)

where Ai is the original value at grid i , Bi is the value after filtering for i =1 to I , Ci is20

the initial value after one pass of filter in each direction from i = I to i =1. α is the filter
coefficient to be determined.

According to Hayden and Purser (1988), the boundary condition for one filtering pass
is:

B0 =0, Ci+1 =
α

1 + α
Bi (10)25
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The filter coefficient can be deduced through comparing the spectral response function
of the filter with the correlation function. For a typical Gaussian correlation function:

Cgauss = ε2 exp
(

(∆x)2/2 L2
)

(11)

where ε2 is the variance, ∆x is the grid spacing and L is the horizontal correlation
length scale, we have:5

α = 1 + E −
√
E (E + 2) (12)

where E =N∆x2/L2 in which N is the number of filter passes. It is important to note,
the IRF should be multiplied by a factor β=ε2√2πL in the application.

For those error correlations being closer, modeling of Gaussian type correlations with
IRF is not adequate. An alternative method called the second-order auto-regressive10

model (SOAR) can be chosen as the correlation function:

Csoar = ε2 (1 + |∆x|/L) exp (|∆x|/L) (13)

In this case, the correlation coefficient is also calculated using Eq. (12), but with differ-
ent E and β :E =N∆x2/4L2, β=ε24L.

In our scheme, both correlation models are employed in 3DVAR for IRF as options15

in which L=35 km, N =10. The standard deviation of background error ε set to be 0.5
for both T/S fields. Because Rf is a symmetric and self-adjoint operator, we can have:

Uh = Rf Rf...Rf︸ ︷︷ ︸
N/2

(14)

It means Uh can be calculated by total of N/2 filter passes.

3.2 Vertical part of the control variables transform20

Like many other 3DVAR applications, the vertical part of the background error covari-
ance is represented by dominant Empirical Orthogonal Functions (EOFs) of the vertical
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background errors, which can be calculated from a vertical correlation function or the
variance of a long-term model simulation. Other than finding a statistical estimation
from the model simulation in the spin-up stage, a vertical correlation function of the
background error, which is similar to the empirical function used in early meteorologi-
cal application, is constructed as follows:5

Rz = 1
/(

1 + Lz (ln ∆z)2
)

(15)

where Lz =20 m is the vertical correlation scale, ∆z is the thickness between two lay-
ers. The structure of the vertical correlation function is shown in Fig. 1. Since only the
most dominant EOFs are used, the number of EOFs is much smaller than the size of
the control vector. Thus, the computational effort is significantly reduced as the size of10

the background error covariance is greatly decreased.

4 The implementation

4.1 DMI-BSHcmod

The model used in this study is the DMI operational model DMI-BSHcmod, which
is a hydrostatic three dimensional circulation model developed by German Bunde-15

samt für Seeschifffahrt und Hydrographie (BSH). It is a free-surface, three-dimensional
ocean circulation numerical model with hydrostatic and Boussinesq approximation.
The model solves the Navier-Stokes equations for the currents u/v, temperature T and
salinity S. The finite difference method is adopted for its spatial discretization in which
the staggered Arakawa C grid (Arakawa and Lamb, 1977) is applied on spherical coor-20

dinates horizontally, and z-coordinate is applied vertically. An upwind time integrating
scheme is used for handling the advection of momentumwhile a conservative, fully ex-
plicit, multidimensional scheme is used for advection of the temperature and salinity.
The model has been running operationally at BSH since mid-90s (Dick et al., 2001)
and at DMI since 2001. The model has been significantly improved in recent years25
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with the support from EU Framework Program projects. As the salty bottom water
flowing into the Baltic Sea originates from the northeast (NE) Atlantic, the model cov-
ers a large area (the Baltic/North Sea and NE Atlantic) in order to study Baltic/North
Sea water exchange through the Danish Straits. Three nesting levels are applied: a
2-dimensional (2-D) NE Atlantic model (NOAMOD) is used to provide surge boundary5

conditions for a Baltic/North Sea 3-D model (NBCMOD). A 3-D coastal model cover-
ing the inner Danish waters (KUCMOD) is two-way nested with the NBCMOD (Fig. 1).
All the three models are set up horizontally in spherical coordinates and vertically in
z coordinate. Both the NOAMOD and NBCMOD have a horizontal resolution of about
6 nautical miles (nm) while the fine grid model has a horizontal resolution of about 1 nm.10

The 3-D models have in total 50 vertical layers. The top layer thickness is selected at
8 m in order to avoid tidal drying of the first layer in the English Strait. The rest of the
layers in the upper 80 m have 2 m vertical resolution. The layer thickness below 80 m
increases gradually from 4 m to 50 m.

The model is forced by hourly meteorological forcing (10 m winds, 2 m air tempera-15

ture, mean sea level pressure, surface humidity and cloud cover) based on DMI opera-
tional weather model HIRLAM (High Resolution Limited Area Model). The forcing has
a horizontal resolution of about 15 km. The surface heat flux is parameterized using
bulk quantities of both atmosphere and sea or sea ice, respectively. The evaporation
flux is taken into account only in the heat budget. Changes of water volume due to20

evaporation, precipitation and ice formation are ignored. River runoff is daily averaged
data derived from river measurements for 5 German rivers, hydrological simulations for
42 Baltic rivers and climatology values for the rest of the rivers.

The turbulence vertical mixing scheme is based on a k −ω turbulence model ex-
tended for buoyancy affected geophysical flows (Umlauf et al., 2003) but with a new25

set of coefficients. Through parameterizations it takes into account breaking surface
waves. The atmospheric forcing of the turbulence model is provided through a new set
of surface flux boundary conditions for k and ω. Different algebraic stability functions
are applied for the vertical diffusivities of momentum, heat, salt and passive tracers
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(Canuto et al., 2002) and these have been reconstructed into new, computationally
sound expressions in turbulent time scale, temperature gradient, salinity gradient, re-
solved velocity shear and unresolved but parameterized shear from breaking internal
waves.

4.2 Coastline treatment5

When RF is applied in 3DVAR, its boundary condition (see Eq. 10) is usually defined
in regular grid points. Since the existence of coastline in regional ocean model, how to
deal with the boundary conditions of IRF becomes a problem. Dorbricic (2008) handle
this problem by inserting some imaginary water points at the land near coast and then
the RF can be calculated on the extended grid. Liu et al. (2009) use a “mirror reflection”10

boundary condition for solving this problem. The purposes of both methods are to make
RF computation more efficiency. However, because the initial value of the analysis
increment is zero in incremental 3DVAR, the RF algorithm can be extended to the land
grid points when it is applied to the full grid. In this case, the typical consumption of
computational time is affordable.15

4.3 Observations

The T/S profile observations are gathered from several sources. First, we use the
database of ICES (International Council for the Exploration of the Sea) which pro-
vides CTD profile data in the Baltic Sea. The second database, MADS (The National
Database for Marine Data), is supplied by NERI (National Environmental Research20

Institute, Denmark). Third, BSH provides T/S profiles from fixed buoy stations in the
North Sea/Baltic Sea. The last data source is ferry boxes in the national and regional
monitoring programs.

Figure 2 shows the spatial and temporal distribution of T/S profiles in the North
Sea/Baltic Sea in 2005. The upper panel shows the spatial coverage of the locations25

of stations or sites packed from different resources. The total number of observations
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sites is 4099. The spatial coverage of the observations indicates an irregular distribu-
tion with relatively denser data in the North Sea and Danish transition waters, but with
sparse data in the Baltic Sea, especially in its northeast part. The bottom panel gives
the daily number of T/S profiles throughout 2005 and displays quite uneven distribution
of measurements with time.5

Most of the T/S profiles have already gone through a primary data quality control.
For further application in data assimilation, we have designed a simple intrinsic quality
control scheme in 3DVAR in order to prevent the potential “poor quality” data from
destroying the analysis. As mentioned in Sect. 2.1, the innovation vector, denoted
by the difference between the background field and the observations, is used as an10

indicator. If the innovation exceeds a certain number of observation error standard
deviations, the observation is discarded. The criteria are set up empirically based on
our past validation results of the model. For example, the observation is discarded if
magnitude of innovation is large than 2.5 ◦C or 2.0 psu.

Figure 3 shows the observation usage in our experiments. Applying the data quality15

control scheme, out of total number of 82 354 temperature and 79 148 salinity mea-
surements, about 92.63 % temperature and 91.16 % salinity measurements can be
used into the data assimilation system.

4.4 Observation error covariance

The observation errors at different sites are assumed to be uncorrelated in space, thus20

the observation error covariance matrix R is diagonal and the specification of R is
then reduced to a list of observation error standard deviations for each data type, vari-
able, and level, etc. In our current scheme, all T/S profile measurements are packed
together, so only unitary standard deviation for T/S are specified for our primary ex-
periment, The standard deviation for T is set to 0.5 ◦C and the value for S is 0.5 psu.25

More realistic estimation of observation standard deviation values would be taken into
account in the future.
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5 Test with isolated observation

Single observation test can be used to evaluate the performance of 3DVAR in a com-
plex system. It is helpful in investigating the basic feature of background error covari-
ance and testing the validity of the DA system. The solution obtained from a complex
system should be close to the analytic solution if the DA system is properly imple-5

mented and effective. Suppose one observation is located exactly at a model grid
point, according to the characteristics of the analytic solution for 3DVAR, the increment
at this point can be simply obtained (Zhuang et al., 2005) with the form:

δx =
σ2

B

σ2
B + σ2

O

d (16)

where δx is the univariate analysis increment at the grid point, d is the innovation cor-10

responding to the single observation, σ2
B and σ2

o are background error variance and
observation error variance, respectively.

A single observation analysis was carried out with 3DVAR scheme with an isolated
temperature observation (116◦E, 56◦ N) at the depth of 5 m in Danish Waters. Figure 4
shows the horizontal and vertical distribution of the analysis increment field. In the hor-15

izontal, the numerical solution presents a Gaussian-shape structure. In the vertical, a
quasi-Gaussian vertical structure is shown, which can be deduced from its correspond-
ing correlation functions. The maximum value of the increment, from Fig. 4, is 0.52 ◦C.
By Eq. (16), the analytic solution can be calculated at the observation point, which is
about 0.5 ◦C. The two solutions are not identical because interpolations in the DA sys-20

tem have effect on the solution. Moreover, influence of iterations for minimization is not
negligible.
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6 Experiments

Three experiments are performed in order to evaluate the impact of 3DVAR data as-
similation scheme on the model simulations. The first two experiments are carried
out for calendar year 2005. The first experiment is a control run, in which the model
perform daily 24-h forecasts without data assimilation. The second experiment is the5

same as the first one except that all collected observations assimilated into the model
by 3DVAR scheme. In order to examine how long the impact of the assimilated initial
state can persist, the third experiment is run only for one month starting with an assim-
ilated initial state from the second experiment at 1 March 2005. No observations are
assimilated during this period. The assimilation is carried out daily provided that there10

are observations.

6.1 Experimental set-up

In the experiments, the model is set up with two-way nested domains in which the
coarse grid covers the North Sea/Baltic Sea area with horizontal resolution of 10′ in
longitude and 6′ in latitude (approximately 11 km by 11 km), and the fine grid covers15

the Danish Waters and German Bight with horizontal resolution of about 1.8 km. The
bathymetry and model domain setup is shown in Fig. 6. 50 vertical layers at fixed
depth levels are used for the coarse grid model, 52 layers at a different set of fixed
depth levels for the fine grid model. 3DVAR use the same resolutions as the model. In
a data assimilation cycle, observations are assimilated on the coarse grid model and20

fine grid model, respectively. The assimilation is carried out daily provided that there
are observations.

6.2 Results

Normally, the 3DVAR scheme can be assessed by comparing the statistics of differ-
ences between the model state and in situ observations for the experiments with or25
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without data assimilation. In our system, the innovations are calculated and saved in
log files, which provide an easy way to estimate the RMSE and bias from those differ-
ences. For the data assimilation experiment, it should be noted that the innovations
are calculated before the assimilation analysis time and the corresponding observa-
tions are not used. Therefore, the evaluation of the analysis quality can be regarded as5

independent (Dobricic, 2008). Additionally, the RMSE and bias of analysis minus ob-
servation (analysis residual) are calculated in order to show to what extent the analyses
agree with observations.

Figure 7 shows the spatially averaged RMSE and bias estimated from the innovation
and analysis residuals of both temperature and salinity for the period January 2005–10

December 2005. For both temperature and salinity, the RMSE of innovation is gener-
ally smaller throughout the year 2005 when the data assimilation scheme is applied,
indicating that the data assimilation improves the simulations. Particularly, the RMSE
and bias is significantly reduced with the 3DVAR data assimilation from the middle of
February to the end of March.15

One of the foundations for 3DVAR is the unbiased assumption. Ideally, the back-
ground, observations as well as the analysis are all unbiased. In other words, most
data assimilation systems are bias-blind, which are designed to correct random errors
only (Dee, 2005). In this case, we have

<δx> = 0 (17)20

<d > = <H (xb − yo)> = 0 (18)

where the point bracket represents the spatial or temporal mean. However, in reality,
a systematic bias inevitably exists in both background and observation space, and
consequently in analysis space. Therefore, the mean of analysis increment stands
for the analysis bias while the mean of innovation represents the model bias, if the25

observation is assumed to be the “truth”. In Fig. 7b and d the daily model biases are
shown for both experiments. The results indicate that the model biases of temperature
and salinity are obviously reduced with 3DVAR data assimilation.
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Figure 8 presents the overall statistics of the RMSE and bias calculated from the
3 experiments. On average, with 3DVAR data assimilation, the temperature RMSE is
reduced by 0.22 ◦C, and the salinity RMSE is reduced by 0.41 psu. The T/S bias is
reduced by 0.23 ◦C and 0.3 psu, respectively. From above estimation, it can be found
that temperature and salinity of the model have positive biases. Relatively, the bias of5

salinity is more decreased after the assimilation.
Further investigation has been done by analyzing the time averaged profiles for T/S

RMSE and bias calculated from the above experiment results. Because of uneven
depth of the ocean bathymetry in the North and Baltic Sea, as well as the scarcity of
observations in deeper ocean, the calculation is performed only covering the volume of10

above 100 m. Most of the observations are located above 100 m, making the statistics
more reliable. Figure 9 shows the comparison of RMSE and bias of T/S innovation
for the control run, assimilation run and the analysis residual. It is obvious that the
data assimilation significantly reduces the RMSE and bias of the model simulation
throughout the layers. For temperature, the RMSE is largest at the depth of 60 m,15

which corresponds to the typical depth of thermocline. The RMSE of salinity shows
a clear declining tendency except at the depth of 40 m, where a spike is found. On
average, the RMSE of temperature and salinity is reduced by 0.2 ◦C and 0.25 psu.
Aside from the RMSE, 3DVAR is shown to be effective in reducing the model biases
of temperature and salinity (right panel in Fig. 9). Positive bias of the temperature is20

found with two maxima locating at the depth of 15 m and 60 m, respectively. For salinity
above 60 m, the bias is positive with values up to 0.8 psu. Below 60 m, however, the
bias is negative. After assimilation, the bias of temperature and salinity is reduced by
0.1 ◦C and 0.2 psu on average.

In order to examine how long the influence of the assimilated initial state will persist,25

simulation of one month has been carried out starting on 1 March 2005. During this
period, no observation is assimilated but with an initial state obtained from the above
data assimilation experiment. In this experiment, only the initial state contains the
previous observational information. In Fig. 10, the result of this experiment is compared
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with the control run and assimilation run. From Fig. 10a, it is seen that the RMSE of
temperature is clearly smaller than the control run at the first 2 weeks. For salinity,
the RMSE is reduced by 0.5 psu at the first 2 weeks with the initial state taken from
the assimilation run. Different from the temperature, RMSE of salinity is still smaller
than the control run from 20 March to the end of the month. This provides useful clues5

when the time window of observation is chosen for an ocean data assimilation system.
A daily cycle of assimilation may not be necessary. A time window of about 1 week
may be used by assembling observations. This is also important for operational data
assimilation when real-time observations are not available for T/S profiles.

From Fig. 10, it can also be noted that the bias of temperature is nearly the same10

starting from different initial states. Comparatively, the bias of salinity witnesses clear
reduction of about 0.5 psu. Salinity experiences less variations than the temperature in
this short period, which helps to retain the influence of the initial state. The RMSE and
bias is also affected by the starting date. More experiments are needed in the future to
further examine this issue.15

7 Conclusions and discussions

The development and implementation of a regional oceanographic 3DVAR data as-
similation system for operational purpose is described in this paper. Similar to some
meteorological 3DVAR implementation, the most common approaches such as the in-
cremental method, IRF and vertical EOFs are applied in 3DVAR. In order to assess20

the 3DVAR scheme, three experiments for 2005 have been carried out with relatively
simple specified background error and observation error parameters. The results show
that the T/S simulation is improved with much smaller RMSE and bias compared to
that without data assimilation. On average, the RMSE of temperature and salinity is
reduced by 0.2 ◦C and 0.25 psu. In addition, the bias of temperature and salinity is also25

decreased by 0.1 ◦C and 0.2 psu, respectively. Moreover, the assimilated initial has a
positive impact on the model simulation with the period of persistence being nearly two

1148

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/1131/2011/osd-8-1131-2011-print.pdf
http://www.ocean-sci-discuss.net/8/1131/2011/osd-8-1131-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
8, 1131–1160, 2011

A pre-operational 3-D
variational data

assimilation system

S. Y. Zhuang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

weeks. Relatively, the effect on salinity is more pronounced than temperature. This
offers a possibility of properly using offline (opposite to real-time) observations in an
operational data assimilation scheme in the future. It suggests that we can also expect
a better model simulation by running data assimilation once every 2 weeks when there
are no real-time observations.5

The preliminary results are encouraging in some aspects, but there are still some is-
sues to be addressed to further improve this coastal and shelf ocean data assimilation
system. For instance, IRF is worthy to be replaced with ARF for modeling anisotropic
structure of the background error covariances in the North/Baltic Sea though it is com-
putationally more expensive. Estimation of the background error could be further inves-10

tigated with long time model simulations. Moreover, the multivariate control variables
analysis could be a better choice for producing more consistent analysis and forecast.
Finally, apart from profiles, other observations like sea surface temperature (SST) and
sea surface height (SSH) are very valuable for a pre-operational system. They will play
an complementary role in the assimilation when T/S profiles are assimilated.15
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Figure 1, Sketch of the vertical correlation of the background error covariance. The 
curves labeled with different colors stands for the vertical correlation distribution at 
different levels. 

25 

 

Fig. 1. Vertical correlations of the background error covariance. Each line labeled with different
colors stands for a vertical correlation between one layer located at the right top of the line and
others.
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Figure 2, T/S profile distribution in the North Sea/Baltic Sea during 2005. The left panel 

shows the spatial coverage. The outer rectangle frame covers the model coarse grid 

domain and inner red rectangle frame covers the model fine grid domain. The right panel 

shows the temporal distribution. The blue column indicates the model coarse grid domain, 

the red column for the model fine grid domain. 

26 

 

Fig. 2. T/S profile distribution in the North Sea/Baltic Sea during 2005. The upper panel shows
the spatial coverage. The outer rectangle frame covers the model coarse grid domain and inner
red rectangle frame covers the model fine grid domain. The bottom panel shows the temporal
distribution. The blue column indicates the model coarse grid domain, the red column for the
model fine grid domain.
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Figure 3, Total number of observation points versus used number of observation points 

for temperature and salinity in situ profiles. 
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Fig. 3. Total number of observation points versus used number of observation points for tem-
perature and salinity in situ profiles.
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Figure 4: The analysis increment corresponding to 1.0 unit innovation with an isolated T 

at Danish Water. Left panel: horizontal distribution at 5 meters; Right panel: cross section 

at 56ºN. 
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Fig. 4. The analysis increment corresponding to 1.0 unit innovation with an isolated T at Danish
Water. Upper panel: horizontal distribution at 5 m; bottom panel: cross section at 56◦ N.
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Figure 5, A case of minimization iteration：the gradient of cost function has descended 

to be around zero. 
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Fig. 5. A case of minimization iteration. The gradient of cost function has descended to be
around zero.
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Figure 6, DMI-BSHcmod bathymetry and domain setup. The bathymetry shown in the 

figure is from the coarse grid. The red rectangle frame outlines the inner fine grid.  
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Fig. 6. DMI-BSHcmod bathymetry and domain setup. The bathymetry shown in the figure is
for the coarse grid. The red rectangle frame outlines the inner fine grid.
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Figure 7, The daily spatially averaged RMSE and bias of innovations (background minus 

observation) for the experiment with 3DVAR data assimilation (blue line), and the 

experiment without data assimilation (red line). The corresponding rmse and bias of 

analysis residual (analysis minus observation) are shown in green line. 
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Fig. 7. The daily spatially averaged RMSE and bias of innovations (background minus obser-
vation) for the experiment with 3DVAR data assimilation (blue line), and the experiment without
data assimilation (red line). The corresponding rmse and bias of analysis residual (analysis
minus observation) are shown by green line.
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Figure 8, The gross RMSE (left figure) and bias (right picture) of T/S for control 

(Tct/Sct)，3DVAR data assimilation innovation (Tin/Sin)，as well as 3DVAR data 

assimilation analysis residual (Tan/San). 
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Figure 8, The gross RMSE (left figure) and bias (right picture) of T/S for control 

(Tct/Sct)，3DVAR data assimilation innovation (Tin/Sin)，as well as 3DVAR data 

assimilation analysis residual (Tan/San). 
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Fig. 8. The gross RMSE (left panel) and bias (right panel) of T/S for control (Tct/Sct), 3DVAR
data assimilation innovation (Tin/Sin), as well as 3DVAR data assimilation analysis residual
(Tan/San).

1158

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/8/1131/2011/osd-8-1131-2011-print.pdf
http://www.ocean-sci-discuss.net/8/1131/2011/osd-8-1131-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


OSD
8, 1131–1160, 2011

A pre-operational 3-D
variational data

assimilation system

S. Y. Zhuang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 

Figure 9, The comparison of rmse and bias profiles for both temperature (A and B) and 

salinity (C and D)  among  the innovation from control experiment (red line), the 

innovation from 3DVAR assimilation experiment (blue line), and the analysis residual 

from 3DVAR assimilation experiment(green line). The experiments run daily forecast 

through the year 2005. 
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Fig. 9. The comparison of rmse and bias profiles for both temperature (A, B) and salinity (C,
D) among the innovation from control experiment (red line), the innovation from 3DVAR as-
similation experiment (blue line), and the analysis residual from 3DVAR assimilation experi-
ment(green line). The experiments run daily forecast through the year 2005.
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Figure 10, The daily spatially averaged rmse and bias of innovation of both temperature 

(A and B) and salinity (C and D) for the experiments with 3DVAR data assimilation 

(blue line), without data assimilation (red line), as well as one month non-data 

assimilation run with assimilated initial value (black line) throughout March, 2005. 
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Fig. 10. The daily spatially averaged rmse and bias of innovation of both temperature (A, B)
and salinity (C, D) for the experiments with 3DVAR data assimilation (blue line), without data
assimilation (red line), as well as one month non-data assimilation run with assimilated initial
value (black line) throughout March 2005.
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